
Introduction
To satisfy the rapidly increasing capacity demands,

utilizing high-order QAM formats in coherent optical

communication systems is a feasible solution. However, the

performance of high-order QAM systems is seriously

impacted by nonlinearity. K-Nearest Neighbors (KNN), as a

classical machine learning algorithm, is an effective method

to mitigate the nonlinearity, due to the flexibility and

adaptive capacity.

In this paper, a K-means-Tailored KNN (TKNN)

algorithm is proposed for nonlinear equalization in high-

order QAM systems. By multi-level processing of test data,

tailoring training data, and introducing the weighted-voting

rule, K-means-TKNN algorithm can effectively mitigate

nonlinearity while greatly reducing the computational

complexity compared with the traditional KNN algorithm.
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Simulation and results
The performance of K-means-TKNN is verified in a 300km 60-Gb/s single-carrier 64-QAM

simulation system in Fig. 3. To make K-means-TKNN algorithm achieve better nonlinear

equalization effect, it is necessary to optimize the parameters k, R and e. Fig. 4 shows that the

BER curves of K-means-TKNN algorithm versus parameters k, R and e, when launched power

into fiber (Pin) is 1dBm, 2dBm and 3dBm respectively. Through our analysis, in order to

achieve better BER performance of system, the parameter values of k, R and e can be selected

at around k=7, R=0.56 and e=21%, respectively.

Fig 3. Simulation setup for 64-QAM single-carrier coherent optical communication system.
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Fig 4. BER of K-means-TKNN versus parameters k, R and e respectively, when Pin is 1dBm, 2dBm and 

3dBm: (a) k of the nearest neighbors; (b) threshold value R in multi-level processing of test data; (c) training 

overhead e.

BER is calculated by changing Pin from -5dBm to 4dBm as shown in Fig. 5. The results

show the performance of K-means-TKNN is slightly better than that of traditional KNN. For a

Hard-Decision (HD) Forward Error Correction (FEC) threshold of 3.8e-3, K-means-TKNN

can obtain gains of 0.85dB, 0.60dB, and 0.07dB compared with MED decision, K-means and

KNN respectively.

Table I shows the computational complexity of the above algorithms by calculating average

running time. The running time of K-means-TKNN can be reduced to 20.3% of that of KNN.

Table I. Running time of nonlinear mitigation methods

Fig 5. BER curves of the algorithms.

Conclusion
A K-means-TKNN algorithm is proposed to mitigate nonlinearity for high-order QAM

systems. In this method, K-means makes the first decision for all the test data, and TKNN

makes the second decision for the partial test data suffering more noise. The performance of

K-means-TKNN is verified in a 60-Gb/s single-carrier 64-QAM simulation system at 300km.

The results indicate that K-means-TKNN can achieve slightly better nonlinear equalization

effect than traditional KNN algorithm.
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Principle
For M-QAM coherent optical transmission systems, the

specific steps of the K-means-TKNN algorithm are shown in

Fig.1.

Fig 1. The flow chart of K-means-TKNN algorithm

a) All test data points from the receiver are clustered by K-

means algorithm, and the clustering labels of test points and

M centroids can be obtained after algorithm converging. b)

The multi-level processing of test data. The Euclidean

distance from the test point to the centroid is calculated in

each cluster. If the distance is less than the threshold value R,

the final label of the test point is equal to the clustering label

in step a). Otherwise, the final label is obtained through

TKNN described in the following step c). c) Tailoring the

training data. The approximate position of the test data point

is determined according to its label by k-means, and the

training data close to the test point are used as the tailored

training set. In addition, the weighted-voting rule is

introduced to improve the classification accuracy.

Fig 2. The application of K-means-TKNN in the 64-QAM system: (a) 

multi-level processing of test data; (b) tailor training data to obtain 

novel training set T1. 
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