ICOCN' 2021 Qufu, China Aug. 23-27, 2021

The 19th International Conference on Optical Communications & Networks

Design of Low-chromatic-dispersion Weakly-coupled Few Mode Fiber

Qichen He¹, Yao Li², Fei Gao², Mingqing Zuo¹, Haotian Cao¹, Yuyang Gao¹, Yongqi He¹, Zhangyuan Chen¹ and Juhao Li^{1*}

1. State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing, China. Juhao li@pku.edu.cn 2. China Shipbuilding System Engineering Research Institute, Beijing, China

Introduction

Due to the exponential growth of global Internet traffic, there has been an increasing demand for larger capacity data centers interconnects.

Simulation Results Designed profile 4-mode FMF Step index profile (a) Refractive index profile

- □ Mode division multiplexing (MDM) based on few mode fibers (FMF) has been widely investigated as an alternative technique to scale link capacity.
- The chromatic dispersion (CD) is still a major transmission impairment for IM/DD MDM transmission. **□** FMF with both low modal crosstalk and low CD level is highly welcomed.

Design Principles

□ Based on first order perturbation theory, mode effective index of LP_{mn} can be expressed as: $n_{eff,mn} = n_{0,eff,mn} + \int_{0}^{r_{core}} \Delta n(r) I_{mn}(r) r dr$ where the $\Delta n(r)$ is the refractive index change from the initial fiber, the $n_{0,eff,mn}$ and $I_{mn}(r)$ represent mode effective

refractive index and normalized radial intensity distribution of LP_{mn} in the initial fiber.

□ The mode effective refractive index difference between LP_{mn} and LP_{pq} is calculated with the formula:

$$\Delta n_{\text{eff},mn,pq} = \Delta n_{0,\text{eff},mn,pq} + \sum_{j=1}^{N} \Delta n(j) A_{r,mn,pq}(j)$$
$$A_{mn,pq}(r) = [I_{mn}(r) - I_{pq}(r)]r$$

where *j* means the index of rings along the radial, N is the number of rings, $\Delta n(j)$ represents the refractive index changes at the *j*-th rıng

Using three-point numerical differentiation, the chromatic dispersion of LP_{mn} at wavelength λ can be expressed as:

$$D_{mn}(\lambda) = D_{0,mn}(\lambda) - \frac{\lambda}{c\Delta\lambda^2} \sum_{j=1}^{N} \Delta n(j) B_{r,mn}(j)$$

 \Box By using heuristic searching, $\Delta n(j)$ can be optimized for specific mode refractive index differences and chromatic

7-mode FMF

(a) Refractive index profile of designed and step-index 7-mode FMF, and n_{eff} of 7 supporting LP modes; (b) Chromatic dispersion curves of 7 supporting LP modes in designed and stepindex FMF.

 \square The min $|\Delta n_{eff}|$ is improved from 0.56×10^{-3} to 0.89×10^{-3} \square All modes have |D| < 8ps/km/nm over the wavelength from 1290 nm to 1330 nm

Conclusion

• We propose a low-chromatic-dispersion (CD) weaklycoupled FMF design method.

Two low-chromatic-dispersion weakly-coupled FMFs supporting 4 modes and 7 modes respectively have been designed. The min $|\Delta n_{eff}|$ of two fibers are 1.05×10^{-3} and 0.89×10^{-3} , and the |D| of each supporting modes is lesser than 8 ps/km/nm over wavelength 1290nm to 1330nm. • With the optimization method, this work can be extended for supporting more modes.

1300 1320 1330 1310 1290

Wavelength (nm)

References

1. Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2016 - 2021 White Paper 2. Etherner Alliance Roadmap 2020 3. D. J. Richardson, et. al., Nature Photonics, 7(5), pp.354-362, 2013. 4. Y. Chen et al., J. Lightwave Technol 33(7), 1440(2015). 5. F. Ren, et al., IEEE Photonics Journal 7(5), 1(2015). 6. D. Ge, at al., Optics Communications 451, pp97-103, 2019. 7. Snyder A.W. et al., Optical Waveguide Theory, 1983

This work is supported by NSFC (61771024, 61627814, 61690194, 61901009 and U20A20160), Projects Foundation of YOFC (SKLD2003), Shenzhen Sci. & Tech. Plan (JCYJ 20180227175348359), Postdoc. RFC (BX20200003, 2018M641086 and 2020M680236)